首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14825篇
  免费   1667篇
  国内免费   1318篇
电工技术   220篇
综合类   1166篇
化学工业   1722篇
金属工艺   2562篇
机械仪表   761篇
建筑科学   1286篇
矿业工程   873篇
能源动力   210篇
轻工业   255篇
水利工程   373篇
石油天然气   2764篇
武器工业   185篇
无线电   346篇
一般工业技术   4130篇
冶金工业   744篇
原子能技术   106篇
自动化技术   107篇
  2024年   22篇
  2023年   213篇
  2022年   385篇
  2021年   552篇
  2020年   567篇
  2019年   531篇
  2018年   529篇
  2017年   582篇
  2016年   537篇
  2015年   589篇
  2014年   723篇
  2013年   848篇
  2012年   919篇
  2011年   1011篇
  2010年   757篇
  2009年   804篇
  2008年   760篇
  2007年   832篇
  2006年   830篇
  2005年   773篇
  2004年   619篇
  2003年   585篇
  2002年   556篇
  2001年   470篇
  2000年   388篇
  1999年   356篇
  1998年   331篇
  1997年   310篇
  1996年   247篇
  1995年   214篇
  1994年   177篇
  1993年   137篇
  1992年   119篇
  1991年   119篇
  1990年   146篇
  1989年   98篇
  1988年   45篇
  1987年   22篇
  1986年   21篇
  1985年   17篇
  1984年   15篇
  1983年   18篇
  1982年   16篇
  1981年   1篇
  1980年   9篇
  1979年   6篇
  1978年   1篇
  1975年   2篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell–deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.  相似文献   
2.
Repetitive heating and cooling cycles inevitably cause crack damage of hot gas components of gas turbine engines, such as blades and vanes. In this study the self-healing capacity is investigated of mullite + ytterbium monosilicate (Yb2SiO5) as EBC material with Ti2AlC MAX phase particles embedded as a crack-healing agent. The effect of Ti2AlC in the EBC was compared with the self-healing ability of the mullite + Yb2SiO5 material. After introducing cracks by Vickers indentation on the surface of each sample, crack healing was realized by controlling the temperature and time during the post-heat-treatment process. For the mullite + Yb2SiO5 composite with Ti2AlC particles, crack healing occurred at 1000 °C, while in the case of the mullite + Yb2SiO5 composite without Ti2AlC, a sustained temperature of 1300 °C or higher was required. Compared with the healing of the mullite + Yb2SiO5 composite by the formation of a eutectic phase, the addition of Ti2AlC promoted healing via the oxidation of Ti and Al. Notably, the surface formation of a ternary oxide of Ti–Yb–O was confirmed, which completely covered the damage area. Consequently, the addition of a Ti2AlC MAX phase to the EBC composite resulted in a complete strength recovery, while the mullite + Yb2SiO5 composite without Ti2AlC showed a strength recovery of about 80%. Furthermore, by analyzing the indentation load–displacement curve to indicate the role of Ti2AlC, the addition of Ti2AlC improved both the hardness and stiffness of the composite.  相似文献   
3.
Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process—however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.  相似文献   
4.
对Inconel 690传热管材进行钨极气体保护焊(GTAW)对接焊,采用拉伸试验机、压扁试验机和光学显微镜测试和分析传热管焊接接头,同时利用ANSYS软件开展焊接接头在设计工况失压时的一次应力强度校核。研究结果表明:焊缝中心为树枝胞状晶,熔合线附近为粗大柱状晶。室温时接头的平均抗拉强度为619 MPa,平均屈服强度为292 MPa,350℃时接头平均抗拉强度为475 MPa,平均屈服强度为206 MPa,拉伸接头断裂从熔合区开始贯穿整个焊缝组织,呈塑性断裂。压扁试验和反向压扁试验结果表明管接头完好。通过ANSYS分析可知,设计工况下传热管接头350℃许用应力强度150 MPa限值可满足其一次应力强度要求,且裕量较大。  相似文献   
5.
针对致密砂岩油藏大规模体积压裂开发后能量补充困难的问题,利用自主设计制作的大型人造三维岩心物理模型和物理模拟实验舱,开展致密砂岩油藏能量补充方式优化研究。实验结果表明:致密砂岩油藏压裂开发过程中,地层能量损耗严重,采取注水或注气的方式可有效进行能量补充;地层中裂缝规模越大,越有利于原油渗流,后续补充能量的传播范围越广,有助于进一步提高原油采收率;从提高驱油效率和扩大波及系数方面优选吞吐渗吸介质,CO2均优于活性水,CO2吞吐开发在矿场试验中取得了显著的增油效果,因此,CO2吞吐作为一种有效的能量补充方式在致密油开发中展现了良好的应用前景。该文分析了致密砂岩储层水平井压裂开发的渗流规律,优选出致密砂岩储层大规模压裂开发后最佳渗吸介质,可为致密砂岩油藏开发设计提供重要的理论依据。  相似文献   
6.
针对煤炭开采过程中出现的突水事故,采用RFPA数值模拟软件建立采动模型,对底板裂隙破断过程和声发射进行模拟,研究煤层底板采动裂隙扩展突水通道,结果表明:离断层越近,断层内水压导升高度越高,断层出现活化,裂隙扩展发育,最终贯通形成导水通道,在进行注浆改造后,单个钻孔的最大涌水量为8 m3/h,说明注浆加固防治水效果较好,能确保工作面的安全回采。  相似文献   
7.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
8.
Crystalline quartz has long been identified as among the weakest of abundant crustal minerals. This weakness is particularly evident around the αβ phase inversion at 573°C, in which Si–O bonds undergo a displacive structural transformation from trigonal to hexagonal symmetry. Here we present data using indentation testing methodologies that highlight the precipitous extent of the transformational weakening. Although the indentations are localized over relatively small specimen contact areas, the data quantify the essential deformation and fracture properties of quartz in a predominantly (but not exclusively) compressive stress field, at temperatures and pressures pertinent to conditions in the earth's crust.  相似文献   
9.
Prediction of mode I fracture toughness (KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression (LMR) and gene expression programming (GEP) methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and elastic modulus (E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets. Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156, respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2 value and lower errors.  相似文献   
10.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号